TRAC Program

Rachel Mroz

What have I been working on?

- Learning new ways to incorporate technology into my classroom
 - Investigating Raspberry Pi systems for my supervisor
 - Replace old high voltage controls with a new system and connections
 - Creating a program and GUI to test high voltage systems for an upcoming project

Images from: https://www.raspberrypi.org/blog/raspberry-pi-2-on-sale/

Raspberry Pi

- Meant for students to learn about programming
- Uses Debian operating system
- Python is already installed

Raspberry Pi

- Small credit card sized computer intended to incorporate more computer science in the classroom
- All you need:
 - 5V charger
 - SD card
 - HDMI adapter
 - Monitor
 - Keyboard
 - Mouse

Applications

- Can be paired together with other Raspberry Pis
- Since it has a USB port can connect to many different devices
- Can also communicate with many different things because of the GPIO header
 - RS232 serial communications
 - LCD Screens
 - Touch screens

High Voltage Control System

High Voltage Power Supply System

Master Module

VME Module

Why Bother?

- These supplies were used for the D-Zero experiment
- Why waste materials?
- An alternative to purchasing new materials for new experiments

Providing a HV System

- Write a program that could read and write to various pods in a high voltage control system
- Challenges:
 - Needed to figure out the most efficient way possible
 - Never done this before
 - Understanding what the terms VME, reads, writes, bits, etc. mean ?!?!

Game Plan

- Understand what the demo program from CAEN did and what you needed to include
- Began writing the basic code in python with functions.
- Then put the functions into classes and developed a way to read and write and manipulate the code to get your data.
- It was a very step by step process and gradually became more and more difficult

□ □ rmroz@mnvdaqts-02:~/CAEN/sample

CAEN VME Manual Controller

R - READ

W - WRITE

B - BLOCK TRANSFER READ

T - BLOCK TRANSFER WRITE

I - CHECK INTERRUPT

1 - ADDRESS [EE000000]

2 - BASE ADDRESS [EE000000]

3 - DATA FORMAT [D16]

4 - ADDRESSING MODE [A32]

5 - BLOCK TRANSFER SIZE [256]

[OFF] 6 - AUTO INCREMENT ADDRESS

7 - NUMBER OF CYCLES [1]

8 - VIEW BLT DATA

GUI

- After the script was written, I tested it for bugs and errors
- Began to make a Graphical User Interface (GUI) using PYQT.
- Again the same challenges with writing the python script

Crate	+5 Digital	+12 Analog	-12 Analog	+12 Bulk	-12 Bulk	Temp DegC	
Pixel							
M217C	4.98	12.29	-12.24	12.18	-12.27	20.26	
M217D	5.16	12.15	-12,42	2.48	-12.36	21.79	
M217E	5.09	Bulk supply voltages		-12.36	20.52		
M218C	5.05			-12.29	22.84		
M218D	5.16	for current pump			-12.30	24.12	
M218E	5.11	12.32	-12.30	12.42	-12.27	22.81	
Central							
M215B	5.04	12.68	-12.53	12.40	-12.44	24.28	
M215C	5.10	12.35	-12.41	12.50	-12.47	22.86	
M215D	5.05	12.31	-12.24	12.41	-12.52	24.41	
M215E	5.17	12.21	-12.21	12.23	-12.25	26.53	
M217B	5.04	12.26	-12.14	12.21	-12.02	26.81	
M218B	4.95	12.35	-12.34	12.33	-12.38	22.54	

Next Steps

- Finish connecting GUI to python script
- Run it with fake data and information to see errors

What I have learned

Applications

- There are many different things I have learned this summer
 - About how I learn and what I need to succeed
 - Trial and error is really important!
 - Not being afraid to ask questions

How to use in my classroom

 Created a raspberry pi and python resource sheet to be implemented into our computer science course

Raspberry Pi Tech Specs

Intro to Raspberry Pi https://www.raspberrypi.org/help/faqs/

Raspberry Pi-- B and B+

(Raspberry Pi- B- This one has the two usb ports, that is the easiest way to tell the difference)

Tech Specifications

Teen openious.					
	В	B+			
SoC	Broadcom BCM2835	Broadcom BCM2835			
CPU	700 MHz single-core ARM1176JZF-S	700 MHz single-core ARM1176JZF-S			
GPU	Broadcom VideoCore IV @ 250 MHz, OpenGL ES 2.0	Broadcom VideoCore IV @ 250 MHz, OpenGL ES 2.0 (24 GFLOPS)			
	(24 GFLOPS)	MPEG-2 and VC-1, 1080p 30			
	MPEG-2 and VC-1, 1080p 30	H.264/MPEG-4 AVC high profile			
	H 264/MPEG-4 AVC high	decoder and encoder			

Create an Air Conditioner

- Create a small air conditioner that can be powered using simple supplies
- Crete a python program that can control the temperature and tell the fan to turn on

Acknowledgments

- Thank you to
 - Geoff Savage, mentor
 - Harry Cheung, TRAC program head
 - Pratima Jindal, TRAC program
 - The other TRAC teachers

References

- http://cdorg.fnal.gov/ese/prep/catalog/ hardware_info/bira/vme4877.html
- http://www-d0.fnal.gov/runcoor/DAQ/Tutorials/ 2004/2004-11-09_Bartlett_HV.pdf